Course Outcomes of All Courses of B.Sc. Chemistry

Course Code	Course Title	Course Outcome1	Course Outcome2	Course Outcome3	Course Outcome4	Course Outcome5
BSC I C1	Chemistry - I (Inorganic)	Identify different types of metals and their chemical properties.	Understand the Concept of ionic bonding and how it forms.	Explain different types of weak interactions (hydrogen bonding, van der Waals forces).	Use VSEPR theory to predict the shapes of molecules.	Understand the basics of nuclear chemistry (isotopes, radioactivity).
BSC I C2	Chemistry - II (Organic)	Explain mechanisms of organic reactions (bond cleavage, reagents, intermediates).	Identify and differentiate various types of isomerism.	Apply stereochemistry principles to chiral molecules (optical activity, diastereoisomers, resolution).	Analyze and interpret organic reaction mechanisms using various methods.	Understand fundamental Concepts of cycloalkanes, dienes, and alkynes.
BSC I C3	Chemistry - III (Physical)	Explain fundamental principles of X-ray diffraction by crystals (unit cell, Bragg's equation, Laue and powder methods).	Differentiate characteristics of solid, liquid, and gaseous states (intermolecular forces, structural differences, liquid crystals).	Apply mathematical Concepts to solve problems in physics and chemistry (logarithmic relations, curve sketching, differentiation, integration).	Explain different types of Colloids, their properties, and factors affecting stability (sols, gels, emulsions, Hardy-Schulze law, emulsifiers).	Analyze and understand the kinetics of chemical reactions (order of reactions, half-life, mean-life, factors affecting rates, experimental methods, activation energy).
BSC II C1	Chemistry - I (Inorganic)	D-block trends & properties (oxidation, magnetism, complex formation)	Predict structures & reactivities of 1st-row transition metal compounds	Compare properties of 2nd & 3rd row transition elements	Use inert pair effect to explain deviations in trends	Understand fundamental principles of coordination chemistry
BSC II C2	Chemistry - II (Organic)	Explain UV & IR regions for studying organic molecules	Classify & name alcohols & phenols, understand hydrogen bonding & reactions	Identify & differentiate aldehydes, ketones, ethers & epoxides, predict nucleophilic addition reactions	Explain structure, bonding & acidity of carboxylic acids, understand reactions & derivatives	Describe preparation & reactions of nitroalkanes & amines
BSC II C3	Chemistry - III (Physical)	Apply thermodynamics concepts to systems, states, processes, work & heat	Explain & apply 1st & 2nd laws of thermodynamics	Understand entropy & its relation to spontaneity & equilibrium	Apply thermodynamics to chemical & phase equilibria	Understand & apply electrochemical concepts to electrolyte solutions & cells
BSC III C1	Chemistry - I (Inorganic)	Differentiate hard/soft acids & bases (HSAB), explain acid-base strength & symbiosis in complexes.	Analyze theoretical basis of hardness/softness & predict stability/reactivity of acid-base interactions.	Identify limitations of valence bond theory & understand crystal-field theory for predicting splitting in different geometries.	Explain factors affecting crystal-field parameters & their influence on complex stability/properties.	Classify magnetic behavior in complexes, use methods for determining magnetic susceptibility & analyze magnetic moments.
BSC III C2	Chemistry - II (Organic)	Explain NMR principles & apply them to understand simple organic molecule structures.	Utilize enolates for various reactions, understand α -hydrogen acidity & apply alkylation techniques.	Analyze aromaticity, synthesis, & reactions of important heterocyclic compounds.	Identify & comprehend synthesis/reactions of specific five & six-membered heterocycles.	Classify & analyze carbohydrates (nomenclature, epimers, anomers, mutarotation, etc.) & understand structures of common sugars & polysaccharides.
BSC III C3	Chemistry - III (Physical)	Explain quantum mechanics fundamentals using concepts like Planck's law, photoelectric effect, & Bohr model.	Analyze wave nature of particles using De Broglie's hypothesis & uncertainty principle.	Describe hydrogen atom structure using Schrödinger equation & identify quantum numbers.	Explain molecular orbital theory principles, including MO construction & bonding/antibonding orbitals.	Differentiate & understand applications of various types of spectroscopy (rotational, vibrational, electronic) for analyzing molecular structure.

BSc Chemistry Program Summary Sheet					
S.NO.	Program Outcomes (POs):	Program Specific Outcomes (PSOs):	Program Educational Objectives (PEOs):		
PO1/PSO1/PEO1	Fundamental chemical knowledge (atomic structure, bonding, thermodynamics, kinetics, spectroscopy, nuclear chemistry)	practical skills to develop innovative solutions across diverse fields, including materials science, pharmaceuticals, environmental science, and energy technology.	years of graduation, BSc Chemistry		
PO2/PSO2/PEO2	Organic chemistry skills (reaction mechanisms, isomerism, stereochemistry, aromatic chemistry)	Translate science into practice: Graduates will be proficient in translating scientific knowledge into tangible applications, working effectively in interdisciplinary teams, and communicating complex scientific concepts to various audiences, both technical and non-technical.	Continuous learning: Graduates will demonstrate a commitment to continuous learning and professional development, actively seeking opportunities to expand their knowledge and skills throughout their careers.		
PO3/PSO3/PEO3	Physical chemistry understanding (thermodynamics, kinetics, electrochemistry, colloids, crystallography)	Ethical and sustainable impact: Graduates will demonstrate a strong commitment to applying their knowledge for the betterment of society, incorporating ethical considerations, environmental awareness, and sustainable practices into their work.	Ethical and responsible conduct: Graduates will uphold the highest ethical standards within the scientific community, promoting sustainable practices, safety awareness, and responsible conduct in their field.		
PO4/PSO4/PEO4	Inorganic chemistry proficiency (transition metals, periodic trends, d-block elements, complex formation)	Lifelong learning and adaptability: Graduates will be equipped and motivated to continuously learn and adapt to evolving needs, actively seeking opportunities to expand their knowledge and skills throughout their careers.	Societal impact: Graduates will be committed to using their knowledge and skills to address real-world challenges and contribute to the betterment of society.		

S.NO.	Program Outcomes (POs):	Program Specific Outcomes (PSOs):	Program Educational Objectives (PEOs):	
PO5/PSO5/PEO5	Analytical skills and instrumental techniques (UV-IR, NMR, mass spectrometry)	Professional conduct and responsibility: Graduates will uphold the highest ethical standards within the scientific community, promoting safety awareness, responsible conduct, and integrity in their chosen field.	Adaptability and resilience: Graduates will be adaptable and resilient, able to navigate changes in the workforce and technology landscape with a positive and proactive approach.	
PO6/PSO6/PEO6	Quantitative and mathematical skills (data analysis, problem solving, scientific interpretation)	Leadership and teamwork: Graduates will be able to effectively lead and collaborate within diverse teams, fostering a positive and inclusive work environment while achieving shared goals.	Effective communication and collaboration: Graduates will be able to communicate effectively and collaborate with diverse stakeholders, fostering a culture of inclusivity and shared understanding.	
PO7/PSO7/PEO7	Communication and critical thinking skills (effective communication, diverse audiences)	Global citizenship and cultural awareness: Graduates will demonstrate an understanding of global challenges and cultural perspectives, contributing to solutions that benefit diverse communities and promote a sustainable future.	Global perspective and leadership: Graduates will possess a global perspective and demonstrate leadership qualities, contributing to solutions that address global challenges and promote positive change.	

Mapping of Course Outcomes of Various Courses of B.Sc. Chemistry Program With Program Outcomes (Pos), Program Specific Outcomes (Pos) & Program Educational Objectives (Peos)

Course Outcome	PO	PSO	PEO	Level	
BSC I INORGANIC CHEMISTRY					
Identify different types of metals and their chemical properties.	PO1	PSO1	PEO1	Remembering (Low)	
Explain the concept of ionic bonding and how it forms.	PO1, PO2	PSO1, PSO2	PEO1, PEO2	Understanding (Medium)	
Use VSEPR theory to predict the shapes of molecules.	PO1, PO2	PSO1, PSO2	PEO1, PEO2	Applying (Medium)	
Understand the basics of nuclear chemistry (isotopes, radioactivity).	PO1, PO2	PSO1, PSO2	PEO1, PEO2	Analyzing (High)	
Explain different types of weak interactions (hydrogen bonding, van der Waals forces).	PO1, PO2	PSO1, PSO2	PEO1, PEO2	Understanding (Medium)	
	BSCIO	ORGANIC CHEMIS	ΓRY		
Identify functional groups in organic molecules.	PO1	PSO1	PEO1	Remembering (Low)	
Explain basic organic chemistry concepts (hybridization, bonding).	PO1, PO2	PSO1, PSO2	PEO1, PEO2	Understanding (Medium)	
Use IUPAC nomenclature to name organic compounds.	PO1, PO2	PSO1, PSO2	PEO1, PEO2	Applying (Medium)	
Interpret organic spectra (IR, NMR) to determine functional groups.	PO1, PO2	PSO1, PSO2	PEO1, PEO2	Analyzing (High)	
Compare and contrast reaction mechanisms for the same transformation.	PO1, PO2	PSO1, PSO2	PEO1, PEO2	Evaluating (High)	
Design a multi-step synthesis of a simple organic molecule.	PO1, PO2, PO3	PSO1, PSO2, PSO3	PEO1, PEO2, PEO3	Creating (High)	
BSC I PHYSICAL CHEMISTRY					
Explain fundamental principles of physical chemistry	PO1, PO2	PSO1, PSO2	PEO1, PEO2	Understanding (Medium)	
Apply mathematical concepts to solve problems in physical chemistry	PO1, PO3,PO6	PSO1, PSO2	PEO1, PEO2	Applying (High)	
Explain different types of solids, liquids, and gases	PO1	PSO1, PSO2	PEO1, PEO2	Understanding (Medium)	
Differentiate between different types of colloids	PO1	PSO1, PSO2	PEO1, PEO2	Understanding (Medium)	
Analyze the kinetics of chemical reactions	PO1, PO2, PO3	PSO1, PSO2	PEO1, PEO2	Analyzing (High)	

Mapping of Course Outcomes of Various Courses of B.Sc. Chemistry Program With Program Outcomes (Pos), Program Specific Outcomes (Pos) & Program Educational Objectives (Peos)

Outcomes (Pos), Progra	Outcomes (Pos), Program Specific Outcomes (Psos) & Program Educational Objectives (Peos)					
Course Outcome	PO	PSO	PEO	Level		
BSC II INORGANIC CHEMISTRY						
Predict structures and reactivities of 1st-row transition metal compounds	PO1, PO2	PSO1, PSO2	PEO1, PEO2	Analyzing (High)		
Compare properties of 2nd and 3rd row transition elements	PO1, PO2	PSO1, PSO2	PEO1, PEO2	Analyzing (High)		
Use inert pair effect to explain deviations in trends	PO1, PO2	PSO1, PSO2	PEO1, PEO2	Applying (High)		
Understand fundamental principles of coordination chemistry	PO1, PO2	PSO1, PSO2	PEO1, PEO2	Understanding (Medium)		
	BSC II	ORGANIC CHEMIS	TRY			
Explain UV & IR regions for studying organic molecules	PO1, PO2,PO5	PSO1, PSO2,PSO3	PEO1, PEO2	Understanding (Medium)		
Classify & name alcohols & phenols, understand hydrogen bonding & reactions	PO1, PO2	PSO1, PSO2,PSO3	PEO1, PEO2	Understanding (Medium), Applying (Medium)		
Identify & differentiate aldehydes, ketones, ethers & epoxides, predict nucleophilic addition reactions	PO1, PO2	PSO1, PSO2,PSO3	PEO1, PEO2	Understanding (Medium), Applying (High)		
Explain structure, bonding & acidity of carboxylic acids, understand reactions & derivatives	PO1, PO2	PSO1, PSO2,PSO3	PEO1, PEO2	Understanding (Medium), Applying (Medium)		
Describe preparation & reactions of nitroalkanes & amines	PO1, PO2	PSO1, PSO2,PSO3	PEO1, PEO2	Understanding (Medium), Applying (Medium)		
BSC II PHYSICAL CHEMISTRY						
Explain & apply 1st & 2nd laws of thermodynamics	PO1, PO2	PSO1, PSO2	PEO1, PEO2	Understanding (Medium), Applying (High)		
Apply thermodynamics concepts to systems, states, processes, work & heat	PO1, PO2, PO3	PSO1, PSO2, PSO3	PEO1, PEO2, PEO3	Applying (High), Analyzing (High)		
Understand entropy & its relation to spontaneity & equilibrium	PO1, PO2	PSO1, PSO2	PEO1, PEO2	Understanding (Medium), Analyzing (High)		
Apply thermodynamics to chemical & phase equilibria	PO1, PO2, PO3	PSO1, PSO2, PSO3	PEO1, PEO2, PEO3	Applying (High), Analyzing (High)		
Understand & apply electrochemical concepts to electrolyte solutions & cells	PO1, PO2	PSO1, PSO2	PEO1, PEO2	Understanding (Medium), Applying (High)		

Mapping of Course Outcomes of Various Courses of B.Sc. Chemistry Program With Program Outcomes (Pos), Program Specific Outcomes (Poso) & Program Educational Objectives (Peos)

Outcomes (Pos),Program	n Specific Outc	omes (Psos) & Pro	gram Educational	Objectives (Peos)	
Course Outcome	PO	PSO	PEO	Level	
BSC III INORGANIC CHEMISTRY					
Differentiate hard/soft acids &					
bases (HSAB), explain acid-base strength & symbiosis in				Understanding (Medium),	
complexes	PO1, PO2,PO4	PSO1, PSO2	PEO1, PEO2	Applying (Medium)	
Analyze theoretical basis of			·	,	
hardness/softness & predict					
stability/reactivity of acid-base	PO1, PO2,	DGO1 DGO2 DGO2	DEG1 DEG2 DEG2	Analyzing (High),	
Identify limitations of valence	PO3,PO4	PSO1, PSO2, PSO3	PEO1, PEO2, PEO3	Applying (High)	
bond theory & understand					
crystal-field theory for predicting					
splitting in different geometries	PO1, PO2,PO4	PSO1, PSO2	PEO1, PEO2	Understanding (Medium)	
Explain factors affecting					
crystal-field parameters & their				Analyzina (High)	
influence on complex stability/properties	PO1, PO2, PO3	PSO1, PSO2, PSO3	PEO1, PEO2, PEO3	Analyzing (High), Applying (High)	
Classify magnetic behavior in	101,102,103	1501,1502,1503	1201,1202,1203	rpprying (riigh)	
complexes, use methods for					
determining magnetic				Understanding (Medium),	
susceptibility & analyze magnetic	PO1, PO2,	Page 1 Page 2 Page 2	DEGI DEGI DEGI	Applying (High),	
moments	PO3,PO4	PSO1, PSO2, PSO3	PEO1, PEO2, PEO3	Analyzing (High)	
	BSC III	ORGANIC CHEMIS	TRY		
Explain NMR principles & apply					
them to understand simple organic	DO1 DO2 DO5	DCO1 DCO2	DEO1 DEO2	Understanding (Medium),	
Utilize enolates for various	PO1, PO2,PO5	PSO1, PSO2	PEO1, PEO2	Applying (High)	
reactions, understand α-hydrogen					
acidity & apply alkylation				Applying (High),	
techniques	PO1, PO2, PO3	PSO1, PSO2, PSO3	PEO1, PEO2, PEO3	Analyzing (High)	
Analyze aromaticity, synthesis, &					
reactions of important	DO1 DO2 DO2	DGO1 DGO2 DGO2	DEG1 DEG2 DEG2	A 1 (III - 1-)	
heterocyclic compounds Identify & comprehend	PO1, PO2, PO3	PSO1, PSO2, PSO3	PEO1, PEO2, PEO3	Analyzing (High)	
synthesis/reactions of specific five				Understanding (Medium),	
& six- membered heterocycles	PO1, PO2	PSO1, PSO2,PSO4	PEO1, PEO2	Applying (Medium)	
Classify & analyze carbohydrates					
(nomenclature, epimers, anomers,				Understanding (Medium),	
mutarotation, etc.) & understand				Analyzing (Medium)	
structures of common sugars & polysaccharides	PO1, PO2	PSO1, PSO2,PSO3	PEO1, PEO2		
porysaccharides	,	, ,			
	BSCIII	PHYSICAL CHEMIS	STRY		
Explain quantum mechanics					
fundamentals using concepts like					
Planck's law, photoelectric effect, & Bohr model	PO1, PO2	PSO1, PSO2,PSO5	PEO1, PEO2	Understanding (Medium)	
Analyze wave nature of particles	101,102	1501,1502,1503	TEO1, TEO2	Chacistananig (Wearani)	
using De Broglie's hypothesis &					
uncertainty principle	PO1, PO2, PO3	PSO1, PSO2, PSO3	PEO1, PEO2, PEO3	Analyzing (High)	
Describe hydrogen atom structure					
using Schrödinger equation &	BO1 BO2	PGO1 PGO2	DEG1 PEG2		
identify quantum numbers	PO1, PO2	PSO1, PSO2	PEO1, PEO2	Applying (High)	
Explain molecular orbital theory principles, including MO					
construction &					
bonding/antibonding orbitals	PO1, PO2	PSO1, PSO2	PEO1, PEO2	Understanding (Medium)	
Differentiate & understand					
applications of various types of					
spectroscopy (rotational,	DO1 DO2			Analysias (III: 1)	
vibrational, electronic) for analyzing molecular structure	PO1, PO2, PO3,PO5	PSO1, PSO2, PSO3	PEO1, PEO2, PEO3	Analyzing (High),	
anaryzing molecular structure	103,103	1501, 1502, 1503	TEO1, FEO2, FEO3	Applying (High)	