B.Sc. Mathematics Course Outcomes Summary Sheet

Course	Paper	Course Outcome 1	Course Outcome 2	Course Outcome 3	Course Outcome 4	Course Outcome 5
B.Sc.Part I	Discrete Mathematics	CO1: Understand basic concepts of sets, relations, and functions.	CO2: Apply principle of inclusion-exclusion for counting problems.	CO3: Prove mathematical statements using mathematical induction.	CO4: Understand Boolean algebra and perform basic operations.	CO5: Analyze logical structure of propositions and arguments.
B.Sc.Part I	Calculus	CO1: Understand concept of derivative and find derivatives of various functions.	CO2: Apply derivative to solve optimization problems.	CO3: Understand concept of integration and find integrals of various functions.	CO4: Apply integral to solve problems in area, volume, and work.	CO5: Understand concept of infinite series and test for convergence.
B.Sc.Part I	Analytic Geometry and Optimization Theory	CO1: Understand basic concepts of analytic geometry (lines, planes, conic sections).	CO2: Solve problems involving intersection of lines and planes.	CO3: Understand concept of optimization and solve linear programming problems.	CO4: Apply simplex method to solve linear programming problems.	CO5: Understand duality and solve dual problems.
B.Sc.Part II	Real Analysis	CO1: Understand basic concepts (limits, continuity, differentiation).	CO2: Prove Bolzano-Weierstrass and Heine-Borel theorems.	CO3: Understand Riemann integration and find integrals of various functions.	CO4: Apply integral to solve problems in area, volume, and work.	CO5: Understand infinite series and test for convergence.
B.Sc.Part II	Differential Equations and Partial Differential Equations	CO1: Understand basic concepts of differential equations (order, degree, solution methods).	CO 2: Solve first-order differential equations of various types.	CO3: Understand linear differential equations and solve second-order linear differential equations.	CO4: Apply differential equations to solve problems in various fields.	CO5: Understand basic concepts of partial differential equations and solve some simple examples.
B.Sc.Part II	Numerical Analysis and Vector Calculus	CO1: Understand basic concepts of numerical analysis (interpolation, differentiation, integration).	CO 2: Use numerical methods to solve problems in various fields.	CO3: Understand basic concepts of vector calculus (gradient, divergence, curl).	CO4: Apply vector calculus to solve problems in various fields.	
B.Sc.Part III	Abstract Algebra	CO1: Understand basic concepts of abstract algebra (groups, rings, fields).	CO 2: Prove basic theorems about groups, rings, and fields.	CO3: Apply abstract algebra to solve problems in cryptography and coding theory.	CO4: Understand concept of vector space and perform basic operations on vectors.	CO5: Apply vector spaces to solve problems in various fields.
B.Sc.Part III	Complex Analysis	CO1: Understand basic concepts of complex analysis (complex numbers, analytic functions, complex integration).	CO2: Prove Cauchy-Riemann equations and Cauchy integral theorem.	CO3: Apply complex analysis to solve problems in fluid dynamics and electromagnetism.	CO4: Understand concept of residue and use residue theorem to evaluate integrals.	CO5: Apply residue theorem to solve problems in physics and engineering.
B.Sc.Part III	Mechanics	CO1: Understand basic concepts of mechanics (motion, forces, energy).	CO2: Solve problems involving linear motion, projectile motion, and circular motion.	CO3: Understand concept of moment of inertia and calculate moments of inertia of various objects.	CO4: Apply principles of equilibrium to solve problems involving forces and moments.	CO5: Understand concept of virtual work and use it to solve problems in statics and dynamics.

B.Sc, Mathematics Program Summary			
S.NO.	Program Outcomes (POs):	Program Specific Outcomes (PSOs):	Program Educational Objectives (PEOs):
PO1/PSO1/PEO1	Demonstrate thorough understanding of fundamental mathematical concepts, theories, and techniques.	Apply mathematical concepts and tools to solve problems in calculus, real analysis, differential equations, numerical analysis, vector calculus, abstract algebra, complex analysis, and mechanics.	Graduates will be able to demonstrate a mastery of fundamental mathematical concepts and techniques.
PO2/PSO2/PEO2	Apply mathematical reasoning and problem-solving skills to solve complex problems in various fields.	Use mathematical software and programming tools to solve mathematical problems.	Graduates will be able to apply their mathematical knowledge to solve problems in a variety of fields.
PO3/PSO3/PEO3	Communicate mathematical ideas clearly and concisely, both orally and in writing.	Design and conduct mathematical research projects.	Graduates will be able to communicate mathematical ideas effectively to a variety of audiences.
PO4/PSO4/PEO4	Work independently and collaboratively as part of a team to achieve mathematical goals.	Communicate mathematical ideas effectively to a variety of audiences, including mathematicians and non-mathematicians.	Graduates will be able to work independently and collaboratively as part of a team.
PO5/PSO5/PEO5	Demonstrate understanding of the ethical responsibilities of mathematicians in society.	Pursue graduate studies in mathematics or related fields.	Graduates will be able to demonstrate an understanding of the ethical responsibilities of mathematicians in society.

Mapping of Course Outcomes of all courses of B.Sc. Mathematics with Program Outcomes, Program Specific Outcomes, and Program Educational Objectives

Course Outcomes	Program Outcomes	Program Specific Outcomes	Program Educational Objectives	Leve
B.Sc. Part-I Discrete Mathematics				
CO1: Understand basic concepts of sets, relations, and functions.	PO1	PSO1	PEO1	Understand (Low)
CO2: Apply principle of inclusion-exclusion for counting problems.	PO2	PSO1	PEO2	Apply (Medium)
CO3: Prove mathematical statements using mathematical induction.	PO1	PSO1	PEO1	Analyze (High)
CO4: Understand Boolean algebra and perform basic operations.	PO1	PSO1	PEO1	Understand (Low)
CO5: Analyze logical structure of propositions and arguments.	PO3	PSO4	PEO3	Analyze (Medium)
B.Sc. Part-I Paper-II Calculus				
CO1: Understand concept of derivative and find derivatives of various functions.	PO1	PSO1	PEO1	Understand (Low)
CO2: Apply derivative to solve optimization problems.	PO2	PSO1	PEO2	Apply (Medium)
CO3: Understand concept of integration and find integrals of various functions.	PO1	PSO1	PEO1	Understand (Low)
CO4: Apply integral to solve problems in area, volume, and work.	PO2	PSO1	PEO2	Apply (Medium)
CO5: Understand concept of infinite series and test for convergence.	PO1	PSO1	PEO1	Analyze (Medium)

B.Sc. Part-I Paper-III Analytic Geometry and Optimization Theory

CO1: Understand basic concepts of analytic geometry (lines, planes, conic sections).	PO1	PSO1	PEO1	Understand (Low)
CO2: Solve problems involving intersection of lines and planes.	PO2	PSO1	PEO2	Apply (Medium)
CO3: Understand concept of optimization and solve linear programming problems.	PO2	PSO1	PEO2	Understand (Medium)
CO4: Apply simplex method to solve linear programming problems.	PO2	PSO1	PEO2	Apply (High)
CO5: Understand duality and solve dual problems.	PO1	PSO1	PEO1	Analyze (High)

B.Sc. Part-II Paper-I Real Analysis				
CO1: Understand basic concepts (limits, continuity, differentiation).	PO1	PSO1	PEO1	Understand (Low)
CO2: Prove Bolzano-Weierstrass and Heine-Borel theorems.	PO1	PSO1	PEO1	Analyze (High)
CO3: Understand Riemann integration and find integrals of various functions.	PO1	PSO1	PEO1	Understand (Low)
CO4: Apply integral to solve problems in area, volume, and work.	PO2	PSO1	PEO2	Apply (Medium)
CO5: Understand infinite series and test for convergence.	PO1	PSO1	PEO1	Analyze (Medium)

B.Sc. Part-II Paper-II Differential Equations and Partial Differential Equations

CO1: Understand basic concepts of differential equations (order, degree, solution methods).	PO1	PSO1	PEO1	Understand (Low)
CO2: Solve first-order differential equations of various types.	PO2	PSO1	PEO2	Apply (Medium)
CO3: Understand linear differential equations and solve second-order linear differential equations.	PO1	PSO1	PEO1	Understand (Medium)
CO4: Apply differential equations to solve problems in various fields.	PO2	PSO1	PEO2	Apply (High)
CO5: Understand basic concepts of partial differential equations and solve some simple examples.	PO1	PSO1	PEO1	Understand (Medium)
	P.Sc. Part-II Paper-III Numerical Analysis and Vector Calculus			
CO1: Understand basic concepts of numerical analysis (interpolation, differentiation, integration).	PSO1	PEO1		

CO 2 : Use numerical methods to solve problems in various fields.	PO2	PSO2	PEO2	Apply (High)
CO3: Understand basic concepts of vector calculus (gradient, divergence, curl).	PO1	PSO1	PEO1	Understand (Medium)
CO4: Apply vector calculus to solve problems in various fields.	PO2	PSO1	PEO2	Apply (High)
B.Sc. Part-III Paper-I Abstract Algebra				
CO1: Understand basic concepts of abstract algebra (groups, rings, fields).	PO1	PSO1	PEO1	Understand (Medium)
CO2: Prove basic theorems about groups, rings, and fields.	PO1	PSO1	PEO1	Analyze (High)
CO3: Apply abstract algebra to solve problems in cryptography and coding theory.	PO2	PSO1	PEO2	Apply (High)
CO4: Understand concept of vector space and perform basic operations on vectors.	PO1	PSO1	PEO1	Understand (Medium)
CO5: Apply vector spaces to solve problems in various fields.	PO2	PSO1	PEO2	Apply (High)
B.Sc. Part-III Paper-II Complex Analysis				
CO1: Understand basic concepts of complex analysis (complex numbers, analytic functions, complex integration).	PO1	PSO1	PEO1	Understand (Medium)
CO2: Prove Cauchy-Riemann equations and Cauchy integral theorem.	PO1	PSO1	PEO1	Analyze (High)
CO3: Apply complex analysis to solve problems in fluid dynamics and electromagnetism.	PO2	PSO1	PEO2	Apply (High)
CO4: Understand concept of residue and use residue theorem to evaluate integrals.	PO1	PSO1	PEO1	Analyze (High)
CO5: Apply residue theorem to solve problems in physics and engineering.	PO2	PSO1	PEO2	Apply (High)
B.Sc. Part-III Paper-III Mechanics				
CO1: Understand basic concepts of mechanics (motion, forces, energy).	PO1	PSO1	PEO1	Understand (Low)
CO2: Solve problems involving linear motion, projectile motion, and circular motion.	PO2	PSO1	PEO2	Apply (Medium)
CO3: Understand concept of moment of inertia and calculate moments of inertia of various objects.	PO1	PSO1	PEO1	Understand (Medium)
CO4: Apply principles of equilibrium to solve problems involving forces and moments.	PO2	PSO1	PEO2	Apply (High)
CO5: Understand concept of virtual work and use it to solve problems in statics and dynamics.	PO2	PSO1	PEO2	Apply (Medium)

